Improving convergence of the stochastic decomposition algorithm by using an efficient sampling technique

نویسندگان

  • José María Ponce-Ortega
  • Vicente Rico-Ramírez
  • Salvador Hernández-Castro
  • Urmila M. Diwekar
چکیده

This work focuses on the basic stochastic decomposition (SD) algorithm of Higle and Sen [J.L. Higle, S. Sen, Stochastic Decomposition, Kluwer Academic Publishers, 1996] for two-stage stochastic linear programming problems with complete recourse. The algorithm uses sampling when the random variables are represented by continuous distribution functions. Traditionally, this method has been applied by using Monte Carlo (MC) sampling to generate the samples of the stochastic variables. However, Monte Carlo methods can result in large error bounds and variance. Hence, some other approaches use importance sampling to reduce variance and achieving convergence faster that the method based on the Monte Carlo sampling technique. This work proposes an improvement on this respect. Hence, we propose to replace the use of the Monte Carlo sampling technique or the importance sampling in the SD algorithm by the use of the novel Hammersley sequence sampling (HSS) technique. Recently, such a technique has proved to provide better uniformity properties than other sampling techniques and, as a consequence, the variance and the number of samples required for convergence are reduced. Also, we use a fractal dimension approach to characterize the error of the estimation of the recourse function based on sampling. The computational implementation of the algorithm involves a framework that integrates the GAMS modeling environment, the HSS sampling code (FORTRAN) and a C++ program which generates appropriate LP problems for each SD iteration. The algorithm has been tested with several case studies representing chemical engineering applications and the results are discussed. © 2004 Elsevier Ltd. All rights reserved.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Updating finite element model using frequency domain decomposition method and bees algorithm

The following study deals with the updating the finite element model of structures using the operational modal analysis. The updating process uses an evolutionary optimization algorithm, namely bees algorithm which applies instinctive behavior of honeybees for finding food sources. To determine the uncertain updated parameters such as geometry and material properties of the structure, local and...

متن کامل

Two-stage Stochastic Programing Based on the Accelerated Benders Decomposition for Designing Power Network Design under Uncertainty

In this paper, a comprehensive mathematical model for designing an electric power supply chain network via considering preventive maintenance under risk of network failures is proposed. The risk of capacity disruption of the distribution network is handled via using a two-stage stochastic programming as a framework for modeling the optimization problem. An applied method of planning for the net...

متن کامل

Solving systems of nonlinear equations using decomposition technique

A systematic way is presented for the construction of multi-step iterative method with frozen Jacobian. The inclusion of an auxiliary function is discussed. The presented analysis shows that how to incorporate auxiliary function in a way that we can keep the order of convergence and computational cost of Newton multi-step method. The auxiliary function provides us the way to overcome the singul...

متن کامل

A Stochastic algorithm to solve multiple dimensional Fredholm integral equations of the second kind

In the present work‎, ‎a new stochastic algorithm is proposed to solve multiple dimensional Fredholm integral equations of the second kind‎. ‎The solution of the‎ integral equation is described by the Neumann series expansion‎. ‎Each term of this expansion can be considered as an expectation which is approximated by a continuous Markov chain Monte Carlo method‎. ‎An algorithm is proposed to sim...

متن کامل

On the Convergence Analysis of Gravitational Search Algorithm

Gravitational search algorithm (GSA) is one of the newest swarm based optimization algorithms, which has been inspired by the Newtonian laws of gravity and motion. GSA has empirically shown to be an efficient and robust stochastic search algorithm. Since introducing GSA a convergence analysis of this algorithm has not yet been developed. This paper introduces the first attempt to a formal conve...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Computers & Chemical Engineering

دوره 28  شماره 

صفحات  -

تاریخ انتشار 2004